
RV’04 Preliminary Version

Enforcing Concurrent Temporal Behaviors

Doron Peled and Hongyang Qu

Department of Computer Science

The University of Warwick

Coventry, CV4 7AL, UK

Abstract

The outcome of verifying software is often a ‘counterexample’, i.e., a listing of the
actions and states of a behavior not satisfying the specification. In order to under-
stand the reason for the failure it is often required to test such an execution against
the actual code. In this way we also find out whether we have a genuine error or
a “false negative”. Due to nondeterminism in concurrent code, recovering an er-
roneous behavior on the actual program is not guaranteed even if no abstraction
was made and we start the execution with the prescribed initial state. Testers are
faced with a similar problem when they have to show that a suspicious scenario can
actually be executed. Such a scenario may involve some intricate scheduling and
thus be illusive to demonstrate. We describe here a program transformation that
translates a program in such a way that it can be verified and then reverse trans-
formed for testing a suspicious behavior. Since the transformation implies changes
to the original code, we strive to minimize its effect on the original program.

Key words: Behavior monitoring, Concurrency, Counterexample
analysis, Model Checking, Nondeterminism, Temporal Logic,
Testing.

1 Introduction

Verification is used to pinpoint the existence of errors in software. The out-
come of the verification process is often given by listing the sequence of
atomic actions and global states comprising a behavior not satisfying the
specification, called a counterexample. Since it is often not the code itself
that is being verified, but rather a model of it, there is a non negligible like-
lihood of encountering a ‘false negative’. That is, an execution that does
not conform with a behavior of the actual program. Since false negatives oc-
cur frequently, an execution suspicious of being faulty needs to be carefully
checked. Unfortunately, executions of concurrent programs may be quite
long and complicated when manually analyzed. Testers face a similar prob-
lem when they are required to show that some suspicious behavior actually

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Peled and Qu

occurs during some run of the code. Given a behavior that appears under
some uncommon scheduling, it may be very hard for a tester to enforce the
tested program to execute it.

We are interested here in causing the checked code to behave according
to a given suspicious execution, which may be the result of a verification or
testing effort. We want to be able to reconstruct and inspect this behavior
in the context of the tested or verified code. Due to nondeterminism asso-
ciated with concurrently executing events, we are not guaranteed to recover
the given execution without enforcing some modification to the checked soft-
ware. We therefore concentrate on minimizing the effect of the changes to the
original code. We suggest a simple and automatic transformation that can be
applied to the code in order to recover the suspicious behavior. Our method
gives the verification engineer or tester a tool for checking and demonstrating
the existence of the error in the code. We impose the following constraints
on the suggested software transformation:

• Minimize the changes to the software. We want to deviate as little as
possible from the original program.

• Enforce the required execution exactly when choosing an appropriate initial
state. Other executions are still available when this initial state is not
selected.

• Any concurrency or independence between executed actions is preserved.
We are reconstructing a concurrent execution, rather than a completely
synchronized one in which one action is executed at a time. Hence our
solution is distributed rather than centralized.

• Preserve the checked property. Not all the execution sequences with the
same concurrent structure as the original counterexample necessarily sat-
isfy the same temporal properties.

• Apply the construction to a finite representation of infinite execution, i.e.,
an ultimately periodic sequence.

Although our transformation will be demonstrated for a given (Pascal-
like) syntax, it is language-independent. We discuss some language and im-
plementation issues in Section 7.

Our architecture is shown in Figure 1. In order to perform the verification,
the program is translated into a finite set of atomic actions. This translation
may also include an abstraction that simplifies the verified model. Another
component of the translation is a dependency relation, which includes pairs
of actions that cannot be executed concurrently, e.g., due to the use of a
shared variable or a message queue. Finally, a third component of the trans-
lation is an annotated code, which has pointers to various locations in the
text, specifically the beginning and the end of the text of the code related to
atomically executed actions. These pointers are useful in adding new instruc-
tions (or changing the existing ones) in a way that will enforce executing the
suspicious behavior.

58

Peled and Qu

+abstraction

Actions
Verifier

specification

Counter

exampleprogram

Dependency relation

Annotated program

Modified

code

concurrent Translation Code
transformation

Fig. 1. System Architecture

Some related work focuses on creating test cases for message sequence
charts. In [9], the difficulty of constructing such test cases is demonstrated.
(But note that the model of message sequence charts is somewhat different,
as it allows all the processes to decide globally to behave according to one
scenario or another; this is a peculiarity of that model that itself requires
analysis [2].) In [15], a solution that is based on adding coordinating mes-
sages is presented. Our solution differs as it does not impose changes that
restrict the concurrency of the system. Transformations for monitoring the
execution of concurrent programs are suggested in [13]. Our contribution
is in analyzing such transformations in the framework of partial order se-
mantics and equivalence between execution sequences. We also show how to
handle ultimately periodic sequences (monitored for a finite, but not apriory
bounded, length of time), and how to preserve the checked property.

2 Preliminaries

As a running example, consider Dekker’s solution to the mutual exclusion
algorithm in Figure 2. The flow graph appears in Figure 3. This graph
was obtained automatically from the code using the PET testing system [7].
Suppose we start the execution with turn = 1. The following execution
σ1 can be obtained, where process P1 enters its critical section. Each line
represents the occurrence of an action. It consists of a sequence number, the
execution process, followed by the number of the flow chart node involved (in
parentheses) according to Figure 3, and followed by the text corresponding
to the action. An action corresponding to a condition is also followed by a
‘yes’ or a ‘no’, depending on whether the test succeeds or fails.

Here, both processes proceed to signal that they want to enter their crit-
ical sections, by setting c1 and c2 to 0 (lines 7 and 8), respectively. Because
turn = 1 (turn is checked in lines 11 and 12), process P1 has priority over
process P2. This means that process P2 gives up its attempt, by setting c2
to 1 (line 13), while process P1 insists, waiting for c2 to become 1 (checked
in line 14) and then enters its critical section (line 15).

1: (P1(0) : start)

2: (P2(0) : start)

3: [P1(1) : c1:=1]

59

Peled and Qu

boolean c1, c2 ;
integer (1..2) turn;

P1::c1:=1;
while true do
begin

c1:=0;
while c2=0 do
begin

if turn=2 then
begin

c1:=1;
while turn=2 do
begin
/* no-op */
end;

c1:=0
end

end;
/* critical section 1 */
c1:=1;
turn:=2

end

P2::c2:=1;
while true do
begin
c2:=0;
while c1=0 do

begin
if turn=1 then

begin
c2:=1;
while turn=1 do
begin
/* no-op */

end;
c2:=0

end
end;

/* critical section 2 */
c2:=1;
turn:=1

end

Fig. 2. Dekker’s mutual exclusion solution

4: [P2(1) : c2:=1]

5: <P2(12) : true> yes

6: <P1(12) : true> yes

7: [P1(2) : c1:=0]

8: [P2(2) : c2:=0]

9: <P1(8) : c2=0?> yes

10: <P2(8) : c1=0?> yes

11:<P1(7) : turn=2?> no

12: <P2(7) : turn=1?> yes

13: [P2(3) : c2:=1]

14:<P1(8) : c2=0?> yes

15:[P1(9) : /* critical-1 */]

A different execution σ2 can be obtained with the same initial state.
Process P2 sets c2 to 0 (line 7), signaling that it wants to enter its critical
section. It is faster than process P1, and manages also to check whether c1
is 0 (line 8) before P1 changes it from 1. Hence P2 enters its critical section
(line 9).

1:(P1(0) : start)

60

Peled and Qu

0: START P1

1: c1 := 1

12: true ?

2: c1 := 0

yes

13: END

no

8: c2 = 0 ?

7: turn = 2 ?

yes

9: critical-1

nono

3: c1 := 1

yes

10: c1 := 1

5: turn = 2 ?

4: no-op

yes

6: c1 := 0

no

11: turn := 2

0: START P2

1: c2 := 1

12: true ?

2: c2 := 0

yes

13: END

no

8: c1 = 0 ?

7: turn = 1 ?

yes

9: critical-2

nono

3: c2 := 1

yes

10: c2 := 1

5: turn = 1 ?

4: no-op

yes

6: c2 := 0

no

11: turn := 1

Fig. 3. Dekker’s mutual exclusion solution

2: (P2(0) : start)

3:[P1(1) : c1:=1]

4: [P2(1) : c2:=1]

5: <P2(12) : true> yes

6:<P1(12) : true> yes

7: [P2(2) : c2:=0]

8: <P2(8) : c1=0?> no

9: <P2(9) : /* critical-2 */>

A (global) state of a program is a function that assigns values to the
program variables, including the program counters. We assume that the
program can be translated into a set of atomic actions A. Each atomic action
consists of a condition and a multiple assignment (changing the values of some
program variables, including program counters). Some of the conditions are
implicit to the text of the program, e.g., a check that a program counter has
a particular value. Similarly, part of the multiple assignment does not come

61

Peled and Qu

directly from the code of the program; in particular each action includes a
change to a program counter variable. For example, a transition for node 3
in process P1 in Figure 3 can have a condition pc1 = 3 and a multiple
assignment (pc1, c1) := (5, 1). That is, pc1 obtains the value 5 and c1 the
value 1. Here pc1 is the program counter for process P1. The actions are
partitioned between the different processes P . We denote by A(pi) the action
of A that belongs to the process pi ∈ P .

An execution sequence (or behavior) σ is an alternating sequence of states
and actions s1, α1, s2, α2 . . . αn−1sn, where each state si+1, for 1 ≤ i < n,
is obtained from its predecessor si by executing the action αi. This means
that the condition of the action αi holds in si and the multiple assignment
associated with αi is applied to si, resulting in the state si+1. Given a fixed
initial state s1, and the fact that actions are deterministic (note that this does
not mean that the code is determinitic, as multiple actions may be enabled
at the same state), we can equivalently represent an execution as then pair
〈s1, α1α2 . . . αn−1〉.

The dependency relation D ⊆ A×A is a reflexive and symmetric relation
over the actions. It captures the cases where concurrent execution of actions
cannot exist. Thus, (α, β) ∈ D when

• α and β are in the same process, or

• α and β use or define (update) a mutual variable 1 .

This dependency corresponds to the execution model of concurrent pro-
grams with shared variables, as used in Section 3. A different dependency
relation can be defined for other models of concurrency, see e.g., Section 5.
Let σ be a sequence of actions from A. We can index the kth time that α

appears on σ with k, obtaining αk. We call αk the kth occurrence of α in σ.
Thus, instead of the sequence of actions ααβαβ, we can equivalently denote σ

as the sequence of occurrences α1α2β1α3β2. We denote the set of occurrences
of a sequence σ by Eσ. In the above example, Eσ = {α1, α2, α3, β1, β2}.

Define a binary relation →σ between occurrences on a sequence σ. Let
αk →σ βl on a sequence σ when the following conditions hold:

(i) αk occurs before βl on σ.

(ii) (α, β) ∈ D.

Thus, αk →σ βl implies that α and β refer to the same variable or belong to
the same process. Because of that, αk and βl cannot be executed concurrently.
According to the sequence σ, the imposed order is αk before βl. Let →∗

σ be
the transitive closure completion of →σ. This is a partial order, since it is
transitive, asymmetic and irreflexive. The partial order view of an execution
σ is 〈Eσ, →∗

σ〉.

We want to impose synchronization of the checked code according to the

1 depending on the hardware, we may allow α and β to be concurrent even if both only
use a mutual variable but none of them define it.

62

Peled and Qu

987654321

Fig. 4. The order between occurrences in the latter execution

relation →σ. However, this relation contains many pairs, which means a lot
of synchronization. This can be inefficient to implement and induce many
changes from the original code. We can reduce →σ by removing pairs of
actions αk →σ βl that belong to the same process or that have a chain of
related (according to →σ) occurrences between them. The reduced relation
between occurrences of σ is denoted by ;σ. It is defined to be the (unique)
relation satisfying the following conditions:

(i) The transitive closure of ;σ is →σ.

(ii) There are no elements αk, βl and γm such that αk ;σ βl, βl ;σ γm and
αk ;σ γm.

Due to the physical nature of concurrent programs, it is sufficient to main-
tain the synchronization according to the ;σ order. The rest of the orders
according to →σ are guaranteed by transitivity and by the sequentiality of
the individual processes.

Calculating the relation ;σ from →σ is simple. We can adapt the Floyd-
Warshall algorithm [6,25] for calculating the transitive closure of →σ. Each
time a new edge is discovered as a combination of existing edges (even if
this edge already exists in →σ), it is marked to be removed. At the end, we
remove all marked edges.

Figure 4 consists of the graph of occurrences that correspond to the exe-
cution sequence σ2 earlier in this section. The nodes in this figure are labeled
according to the sequence numbers listed in σ2. The arrow from node 3 to 8
corresponds to the update and use of the same variable (c1) by the different
processes (and according to ;σ), while the rest of the arrows correspond to
ordering between actions belonging to the same process.

Although an execution is represented by a sequence, we are in general
interested in a collection of equivalent executions. To define the equivalence
between executions, let σ|α,β be the projection of the sequence σ that keeps
only occurrences of α and β. Then σ ≡D ρ when σ|α,β = ρ|α,β for each pair
of interdependent actions α and β, i.e., when (α, β) ∈ D. This also includes
the case where α = β, since D is reflexive. This equivalence is also called
partial order equivalence or trace equivalence [14]. It relates sequences σ and
ρ for the following reasons:

• The same occurrences appear in both σ and ρ.

• Occurrences of actions of a single process are interdependent (all the ac-

63

Peled and Qu

tions of a single process use and define the same program counter). Thus,
each process executes according to both σ and ρ the same actions in the
same order. This represents the fact that processes are sequential.

• Any pair of dependent actions from different processes cannot be executed
concurrently, and must be sequenced. Their relative order is the same
according to both σ and ρ.

• Occurrences of independent actions that are not separated from each other
by some sequence of interdependent actions can be executed concurrently.
They may appear in different orders in trace-equivalent executions. In
enforcing an execution, we do not want to impose new synchronizations
that will order actions that can be executed concurrently. Another way to
look at this is that distinguishing between two equivalent executions can
only be done by having global clocks and making experiments that are
expensive and unnatural to concurrent systems [12].

The partial order view was studied extensively as an alternative for the
more traditional interleaving (linear) semantics [17,21]. The advantage of the
interleaving semantics is that it can be handled with simpler mathematical
tools (such as linear temporal logic [20] or Büchi automata [23]) than the
tools needed for partial order semantics. On the other hand, partial order
semantics gives a more intuitive representation of concurrency. The recent
interest in partial order representation of concurrent systems stems from
the popularity of the ITU standard for message sequence charts [11]. We
propose that the rationale to recover the concurrent execution related to
the behavior, rather than a completely synchronous linear execution, gives
another motivation for using the partial order semantics.

We define several operators on execution sequences, represented as se-
quences of actions (hence, in this case, ignoring the states):

HideB(σ) The sequence σ after removing (projecting out) the actions from
the set B.

ClD(σ) The set of sequences obtained from σ by making repeated permu-
tations between adjacent actions that are independent, i.e., not related by
D. That is, ClD(σ) = {ρ|ρ ≡D σ}.

Lin(E,<) The set of linearizations (completions to total orders) of the par-
tial order 〈E,<〉.

Exec(P) The set of executions of a program P .

The operators defined here over sequences can be easily extended to sets
of sequences, e.g.,

HideB(S) =
⋃

σ∈S

HideB(σ)

Lemma 2.1 We have the following relation [14], connecting the above:

ClD(σ) = Lin(Eσ,→∗
σ)(1)

64

Peled and Qu

That is, the trace-equivalent sequences obtained by shuffling independent events
in σ are the linearizations of the partial order view of σ.

This means that the partial order view and the trace equivalence are dual
ways of looking at the same thing. This will help us to formalize the outcome
of our program transformation.

In order to also take into account the preservation of the temporal prop-
erties, we present an additional view of an execution σ: Let P be a set of
propositions in some given temporal specification (e.g., as a linear temporal
logic specification or using an automaton). Let T : P 7→ {true, false} be a
truth assignment over it. A propositional sequence is a (finite or infinite) se-
quence of truth assignments over some given set of propositions. Interpreting
the propositional variables in each state of a sequence σ (this time ignoring
the actions) results in a propositional sequence.

3 Transforming Shared Variables Programs

We first assume a computational model of several concurrent processes with
shared variables. Each process is coded in some sequential programming
language such as C or Pascal. Although no explicit nondeterministic choice
construct exists, an overall nondeterministic behavior of the program can
be the result of the fact that the processes can operate in different relative
speeds. Hence, even if we start the execution of the code with exactly the
same initial state, we may encounter different behaviors as the sequences σ1

and σ2 from Section 2 demonstrate. Our goal is then to enforce, under the
given initial condition, that the program executes in accordance with the
suspicious behavior.

In order to perform the transformation, we prepare the code, while trans-
lating it into a set of actions. We keep pointers to the text location cor-
responding to the beginning and end of actions. In most cases, the trans-
formation consists of adding code at these locations, i.e., before or after an
action. For simplicity, we start presenting the transformation with the unre-
alistic assumption that we can add code for the existing actions in a way that
maintains the atomicity of the actions. Since this will result in rather large
actions, which cannot realistically be executed atomically, we split them in
a way that is detailed and explained below.

For each pair of processes pi and pj, pi 6= pj, such that for some occur-
rences αk with α ∈ A(pi), and βl with β ∈ A(pj), αk ;σ βl, we define a
variable Vij, initialized to 0. It is used by process pi to inform process pj that
it can progress. This is done in the style of the usual semaphore operations [5]
(it can be proved that a binary semaphore is sufficient here). The process pi

does that by incrementing Vij after executing αk.

Freeij : Vij := Vij + 1

The process pj waits for the value of this variable to be 1 and then decrements

65

Peled and Qu

it.

Waitji : wait Vij > 0;Vij := Vij − 1

Let S(pi) ⊆ A(pi) be the set of actions of process pi that have an occur-
rence in σ and are related by ;σ to an occurrence of an action in another
process. Thus, S(pi) are the actions that have some (but not necessarily all)
occurrences that need to be synchronized. Thus, we need to check whether
we are currently executing an occurrence of an action α ∈ S(Pi) that requires
synchronization. Let count i be a new local counter variable for process pi.
We increment count i before each time an action from S(pi) occurs, i.e., add
the code

count i := count i + 1(2)

immediately after the code for α.

We define ♯iαk to be the number of occurrences from S(pi) that appeared
in σ before αk. We can easily calculate ♯iαk according to the sequence σ.
This is also the the value that the variable count i has during the execution
of the code after the transformation, due to the increment statement in (2).

Suppose now αk ;σ βl, where α ∈ A(pi), β ∈ A(pj), pj 6= pj. Then we
add the following code after αk:

if count i = ♯iαk thenFreeij(3)

We add the following code before βl:

if count j = ♯jβl thenWaitji(4)

The notations ♯iαk and ♯jβl should be replaced by the appropriate con-
stants calculated from σ. Since an action may participate in several occur-
rences on the same sequence, different code akin to (3) and (4) for multiple
occurrences can be added. We can optimize the transformation by not count-
ing (and not checking for the value of count i in) actions that appear only
once in the given execution σ. Similarly, we do not need to count actions
that require the same added transformation code in all their occurrences.

Another consideration is to identify when the execution is finished. We
can add to S(pi) the action α that appears last in the execution per each
process pi. Thus, we count the occurrences of α as well in count i. Let ♯iαk be
the value of count i for this last occurrence αk of α in σ. We add the following
code, after the code for α:

if count i = ♯iαk then halt pi(5)

(there is no halt statement in Pascal, so it is implemented using a goto.)
Again, if the last action of the process is the only occurrence of α, we do not
need to count it. Note that if we do not halt the execution of the process
pi here, we may encounter and perform a later action of pi that is not in σ

and is dependent of an action of another process that did not reach its last
occurrence in σ. This may lead to a behavior quite different than the one we
investigate.

66

Peled and Qu

In order to minimize the effect of the additional code on executions other
than the suspicious execution (or those equivalent to it, under ≡D), we use
an additional flag check i (for each process pi), whose value remains constant
throughout the execution. This flag is true only when we run the code in the
mode where we want to repeat the suspicious behavior. Thus, in addition to
the distinguished initial state for the execution, we also force check i = true

for each process pi. In all other cases, we set initially check i = false. When
check i = false, even if we start the execution according to the initial state
of the suspicious behavior, the program may follow an execution different
than the suspicious one. Note that we chose not to have one global variable
check , since the different references of it by different processes would be
interdependent and hence would defy our goal to preserve the concurrent
structure of the execution.

Now, if Code is some code generated by our transformation, as described
in (2)–(5), we wrap it with a check that we are currently tracing a given
sequence, as follows:

if check i thenCode

Some code simplification may be in place, for example, checking the value of
count i and the value of check i can be combined to a single if statement.

As stated above, modeling the additional code resulted from the trans-
formation as amalgamated into the atomic actions of the original code is
unrealistic. The behavior of the resulted code better corresponds to adding
new actions. However, we have carefully constructed it so that it comprises
of additional actions that are mostly local to a process, i.e., independent of
actions of other processes. The only additional dependent actions are of the
form Free ij and Wait ji. However, when such a pair is added, Free ij would
be preceded by some action αk, and Wait ji is succeeded by an action βl such
that αk →σ βl. The dependence of these actions (Free ij and Wait ji) are the
same as the existing ones (αk and βl). Moreover, it can be shown that there
cannot be any occurrence of an action between αk or Freeij (both in A(pi))
that are dependent on actions from pj. Similarly, all occurrences between
the occurrence of Wait ji and βl (both from pj) are independent of actions
from pi. Hence the concurrency structure of the program is maintained, even
when we break the actions of the transformed program in a more realistic
way. We can formalize this issue as action refinement [24] under the partial
order semantics. However, we prefer to keep the presentation on the intuitive
level rather than on the theoretical-formal one.

Advanced note. In order to avoid introducing unnecessary delays or even
deadlocks, we must guarantee that the implementation of Waitji must not
block the process pi. Specifically, if Vij is 0 and process pj is waiting for it
to become 1, process pi needs to be able to progress, which will allow it to
eventually increment Vij. Such blocking could exist, e.g., on a single processor
multitasking the concurrent program, with Wait ji performing busy waiting
for Vij to become 1, the scheduler is unfair to process pi. It is interesting that

67

Peled and Qu

boolean c1, c2, check1, check2;
boolean V12 initially 0;
integer (1..2) turn;

P1::c1:=1;
if check1 then V12:=1;

while true do
begin
if check1 then halt P1;

c1:=0;
while c2=0 do
begin

if turn=2 then
begin
c1:=1;
while turn=2 do
begin
/* no-op */

end;
c1:=0

end
end;

/* critical section 1 */
c1:=1;
turn:=2

end

P2::c2:=1;
while true do
begin
c2:=0;
if check2 then

begin wait V12>0;

V12:=0 end

while c1=0 do
begin
if turn=1 then

begin
c2:=1;
while turn=1 do
begin
/* no-op */

end;
c2:=0

end
end;

/* critical section 2 */
if check2 then halt P2;

c2:=1;
turn:=1

end

Fig. 5. The transformed Dekker algorithm

the sequence σ3 in Section 6 shows a situation in the Dekker algorithm that
is related to such a case. (Hence, we will demonstrate, using our running
example, a subtle concurrency problem in the Dekker algorithm, which we
need to avoid in the implementation of our transformation.)

Lemma 3.1 If no modeling errors were made, and the actions in the given
suspicious execution correctly follow the original code, then our construction
does not generate new deadlocks.

The transformed Dekker algorithm, which allows checking the path σ2 in
section 2 is shown in Figure 5. The added code appears in boldface letters.

In order to reason about the program transformations we propose, we
will denote the original program actions by A and the augmented set of
actions by A′ ⊃ A (some minor changes can be inflicted on the actions A, in
particular, changes to program counter values, albeit there is no change in

68

Peled and Qu

the code corresponding to these actions). We denote the dependency between
the program actions A by the symmetric and reflexive relation D ⊆ A × A.
Adding new actions A′\A results in a new dependency relation D′ ⊆ A′×A′.
We have that D′ ∩ (A × A) = D, i.e., the program transformations do not
add any dependencies between the original transitions.

Lemma 3.2 Let P be the original program, and P ′ be the result of the trans-
formation. Then we can be expressed as follows:

HideA′\A(Exec(P ′)) = ClD(σ)(6)

That is, when hiding the additional actions from the executions of the
transformed program, we can obtain any execution that is equivalent under
≡D to the sequence σ.

4 Preserving the Checked Property

Our transformation so far enables us to control the execution of the program
in such a way that we are restricted to executions that are trace-equivalent to
the counterexample. Suppose further that the execution σ was obtained using
a model checker, which was used to verify whether some concurrent program
satisfies a property ϕ. We abstractly assume that the property ϕ corresponds
to a set of propositional sequences. In practice it can be specified e.g., using
a temporal formula or an automaton over (finite or infinite) sequences. Since
σ is a counterexample, it typically satisfies ¬ϕ.

Denoting L(ϕ) as a set of propositional executions (or a sequence of ac-
tions, depending on the type of specification), the difficulty appears when ϕ

is not closed under the trace equivalence [19]. That is, we can have ρ ≡D σ

where ρ ∈ L(ϕ) and σ ∈ L(¬ϕ). There are several solutions for this situation.
One is to use a specification formalism that is closed under trace equivalence
(see e.g., [1,10,22]). Another solution is to use a specification formalism that
does not force trace closedness, and then apply an algorithm for checking
whether ϕ is closed. Such an algorithm appears in [19].

We propose here a third possibility, where we do not enforce ϕ to be
trace-closed. The idea is to add dependencies so that the trace equivalence is
refined, and equivalence sequences do not differ on satisfying ϕ. We construct
a graph G = 〈σ, S,⇒〉. Each node in S represents an execution sequence
from ClD(σ). The initial node is σ ∈ S. An edge ρ ⇒ ρ′ exists if ρ′ is
obtained from ρ using the switching of a single adjacent pair of independent
actions. Starting the search from σ, which satisfies ϕ, we check each successor
node for the satisfaction of ϕ. Given that ρ satisfies ϕ but its successor ρ′

satisfies ¬ϕ, we add synchronization that prevents the permutation of ρ into
ρ′. That is, if ρ = µαkβlµ

′ and ρ′ = µβlαkµ
′ for some prefix µ and suffix µ′,

and occurrences βl and αk, we add a synchronization αk →σ βl. Note that
for optimization, we did not make the actions α and β interdependent, but
rather synchronized two specific occurrences. We can reduce →σ using the

69

Peled and Qu

adaptation of the Floyd-Warshall algorithm, as presented in Section 2.

This algorithm provides a small number of additional synchronizations
for preserving the temporal property. However, its complexity is high. The
size of ClD(σ) may be at worst exponential in the length of σ. Other heuristic
solutions are possible. For example, we can follow the partial order reduc-
tion strategies (ample sets, persistent sets or stubborn sets) and check which
actions may change propositions participating in ϕ. Then we make all such
actions interdependent. This solution is good for a specification that is stut-
tering closed. Details and further references can be found e.g., in Chapter 10
of [3]. This solution has a much better complexity (quadratic in the number
of actions), but is suboptimal since it may add some redundant synchroniza-
tions.

5 The Distributed Programs Model

Consider now a different distributed systems model, where we have a hand-
shake (synchronous) message passing instead of shared variables. Other mod-
els, such as buffered communication can be handled in a similar way, following
the description in this and the previous section. We assume that our program
has the following kinds of actions:

• Local actions, related to a single process.

• Communication actions. We assume here a handshake communication, as
in Ada or CSP. Such an action is executed jointly (and simultaneously) by
a pair of processes.

We can again assign dependencies to the actions. We have that (α, β) ∈ D

when α and β participate in a mutual process. Note that in particular a
communication participates in a pair of processes, hence it depends on actions
from both processes.

We use the following syntactic construct:

select S1[]S2[] . . . []Sn end

where the code for Si starts with a communication (send or receive a mes-
sage), after a potential local condition, i.e, a ‘guard’. One syntax for guarded
communication [8] is of the form g ⇒ c, where g is a local condition, and c

is a communication. In turn, c can be of the form P !e, where P is a process
and e is an expression whose calculated value is sent to P , or Q?x, where Q

is a process, and x is a variable to receive the sent value. The joint effect of
P !e on a process Q and Q?x on process P is as if x := e was executed by the
two processes, P and Q.

The select itself is not translated into an action. It is only a keyword
that allows several communication actions to be potentially enabled at that
location.

We add again a local counter count i for each process. The counter is
incremented before each communication action inside a select. We can thus

70

Peled and Qu

check if the value of count i is ♯iαk in order to select according to the given
execution. We can then replace the select statement with a deterministic
code that chooses the appropriate communication according to the suspicious
execution. For example, consider the select statement

select β [] γ end

Suppose that β (together with a matching communication from another pro-
cess) occurs in σ as βj and βk and γ occurs as γl and γm. We replace the
select statement with the following code:

case count i of

♯iβj, ♯iβk : β;

♯iγl, ♯iγm : γ

end

Thus, if count i is either ♯iβj or ♯iβk we need to choose the communication
action β. In the other two cases, we need to choose γ. Note that since a com-
munication is shared between two processes, it would be counted separately
by both.

As in the case of programs with shared variables, we need to add code for
activating the additional checks only when enforcing a suspicious execution,
i.e., when check i = true. Similarly, we include the last action in every
process in the counting, in order to halt the execution. Note that with no
shared variables and under handshake communication, the code added in the
transformation is completely local to the processes.

Lemma 5.1 If no modeling errors were made, and the actions in the given
suspicious execution correctly follow the original code then the transformation
does not introduce new deadlocks.

Note that if we want to enforce preserving the checked property on all
executions that are trace equivalent to the suspicious one (the execution we
want to monitor), we can apply the transformation given in Section 4. This
means adding semaphores and, consequently, shared variables, even when
the original code includes only interprocess communication.

6 Extending the Framework to Infinite Traces

A model checker may generate an infinite execution that fails to satisfy the
given specification. Although infinite, such a sequence is ultimately peri-
odic [23]. It consists of a finite prefix σ and a finite recurrent sequence ρ.
This is often denoted as σρω. We can apply our transformation with some
small changes to the two finite parts, σ and ρ. Of course we cannot execute
σρω, since it is infinite, but we can test its execution for any given finite
length (depending on our patience).

71

Peled and Qu

The first change is to adapt the counting of the actions involved in the
synchronization, and in the last action per process to behave differently ac-
cording to σ and ρ. We add a variable phasei for each process pi, initialized
to 0. We do not halt the execution with σ. Instead, when we reach the last
action of process pi in σ (as described in Section 3), we update phasei to 1,
and behave according to the execution ρ. When we reach the end of σ, and
each time we reach the last current process action according to ρ, we reset
count i to zero.

Let G(ρ) = 〈P,E〉 be an undirected graph, whose nodes are the processes,
and an edge between pi and pj exists if there are occurrences αk, βl of ρ such
that αk ;σ βl or βl ;σ αk, α ∈ A(pi), β ∈ A(pj).

There are three cases for the ultimately periodic part ρ that can be dis-
tinguished:

(i) The graph G(ρ) includes all the processes in one connected component
(a maximal component of nodes such that there exists a path between
each pair of nodes in the component). In this case, in the enforced
execution, some occurrence of the ith iteration of ρ may be overtaken by
the i + 1st iteration of ρ, due to concurrency (independence). However,
such overtaking is limited, and events from the i + 2nd iteration cannot
overtake any event in the ith iteration.

(ii) The graph G(ρ) consists of multiple disjoint connected non-singleton
components. In this case, the behavior is as if the components iter-
ate independently, and there can be an unbounded overtaking between
them 2 . A similar behavior is obtained when concatenating message
sequence charts [16].

(iii) The graph G(ρ) includes only singleton components (i.e., consisting of a
single nodes each). In this case, it is possible that some processes were
not given a fair chance to continue. Then, the construction is not guar-
anteed to behave according to σ ρω. Running the transformed program
may result in additional actions from the underrepresented processes
to be executed. Because of shared variables or message passing, this
can affect the processes that are represented. Because our transforma-
tion inserts some code in which a process may wait for another based
on the suspicious execution, our transformation may result in a dead-
lock. In fact, such a discrepancy between the execution found during
the program analysis (verification, testing) and the actual behavior is a
useful information. It indicates that the analysis did not take into ac-
count some important semantic consideration (fairness), and therefore
increases the possibility that the given execution is a false negative.

We provide here an example for an ultimately periodic sequence σ3, which

2 This distinction is related to the definition of the concurrent star operator c∗ [4] and
its related infinite version cω. The suspicious behavior is defined to be σρω, but without
explicitly synchronizing each repetition of ρ, we actually achieve σρcω.

72

Peled and Qu

indicates that a livelock occurs. Process P1 is occupied in an infinite loop,
waiting for process P1 to relinquish its attempt to get into the critical section,
while process P2 is making no progress. The finite prefix of σ3 is as follows:

1: (P1(0) : start)

2: (P2(0) : start)

3: [P1(1) : c1:=1]

4: [P2(1) : c2:=1]

5: <P2(12) : true> yes

6: <P1(12) : true> yes

7: [P1(2) : c1:=0]

8: [P2(2) : c2:=0]

9: <P1(8) : c2=0?> yes

10: <P2(8) : c1=0?> yes

11:<P1(7) : turn=2?> no

12: <P2(7) : turn=1?> yes

13: [P2(3) : c2:=1]

The recurrent part of σ3 consists of the following two occurrences:

14: <P2(5) : turn=1?> yes

15: [P2(4) : /* no-op */]

The initial state is the same as in the previous example executions. In the
ultimately periodic part, process P1 is not contributing to the execution,
while P2 loops, waiting for turn to become 2 (lines 14 and 15). Since P1
does not execute, turn remains 1 and P2 never goes out of its loop. This
execution can be the result of an analysis that does not take fairness into
account. With fairness, process P1 would continue, and will check the value
of c2, which now becomes 1; hence P1 can continue into its critical section,
and eventually set turn to 2. Consequently, P2 will eventually be able to get
into its critical section.

7 Implementation and Discussion

The suggested algorithm was implemented by the second author. It can be
used independently or as an extension to the PET system [7]. The algorithm
takes as input a concurrent Pascal program and outputs the transformed
program. We used the PET system to test the implementation in the follow-
ing way. PET is designed to check concurrent executions. Given a manually
selected sequence of flow graph nodes, corresponding to the given program
(selected by clicking a sequence of nodes from flow graphs that are auto-
matically generated by PET from the given Pascal processes), it calculates
their path condition. As discussed in Section 2, because of nondeterminism,
such a condition is not sufficient to force the selected sequence. Thus, the
algorithms presented here are exactly the extension needed for forcing the
selected path (up to trace equivalence).

73

Peled and Qu

We can now feed the transformed code, including an assignment that
forces the given initial condition. With that assignment, the new path condi-
tion for each one of the sequences that are trace equivalent to the originally
selected path is true. PET also allows permuting pairs of adjacent indepen-
dent events by selecting the first of them and clicking the mouse. We can
also select other sequences, not equivalent to the original one.

We presented a program transformation that forces a program to execute
according to a given scenario. The changes to the program code inspired
by the transformation are minimal, allowing it to also have the other exe-
cutions, when not started from a particular given initial state (in which, in
particular, check i = true for each process pi). This transformation can be
used to check whether a suspicious behavior reported by a model checker or
a theorem proving effort is indeed faulty. The transformation can also be
used by testers, who need to demonstrate that a discovered error actually
occurs. Due to the highly nondeterministic nature of concurrent programs,
it may be difficult to enforce a suspicious scenario, which may depend on an
infrequent scheduling choices. The transformation preserves the concurrent
structure of the program. Such a simple transformation can be verified or
comprehensively tested in order to gain confidence in its correctness. There-
after, it can be used as a standard tool for testing the results of verification
tools.

References

[1] Alur R., Peled D., W. Penczek (1995), Model-Checking of Causality
Properties, LICS’95, 10th Symposium on Logic in Computer Science, IEEE,
1995, 90–100,

[2] H. Ben-Abdullah, S. Leue, Syntactic detection of process divergence and non-
local choice in Message Sequence Charts, TACAS 1997, LNCS 1217, Springer,
259–274.

[3] E. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press 1999.

[4] V. Diekert, G. Rozenberg, The Book of Traces, World Scientific, 1995.

[5] E. W. Dijkstra, The structure of the THE multiprogramming system,
Communication of the ACM 9(1976), 27–37.

[6] R.W. Floyd. Algorithm 97 (Shortest Path). Communications of the ACM 5

(1962), pp. 365.

[7] E.L. Gunter, D. Peled, Temporal Debugging for Concurrent Systems, TACAS
2002, Grenoble, France, LNCS 2280, Springer, 431-444.

[8] C.A.R. Hoare, Communication Sequential Processes, Prentice-Hall, 1985.

74

Peled and Qu

[9] J. Grabowski, B. Koch, M. Schmitt, D. Hogrefe, SDL and MSC based test
generation for distributed test architecture, SDL 99 The Next Millenium,
Elsevier, June 1999.

[10] S. Katz and D. Peled. Interleaving set temporal logic. Theoretical Computer

Science 75, 21–43, 1992.

[11] ITU-T Recommendation Z.120, Message Sequence Chart (MSC), March 1993.

[12] L. Lamport, Time clocks, and the ordering of events in a distributed system,
CACM 21(1978), 558–565.

[13] T. J. LeBlanc, J. M. Mellor-Crummey, Debugging Parallel Programs with
Instant Replay, IEEE Transactions on Computers, C-36 (4), 471–482, 1987.

[14] A. Mazurkiewicz, Trace Theory, Advances in Petri Nets 1986, Lecture Notes
in Computer Science 255, Springer-Verlag, 1987, 279–324.

[15] B. Mitchell, Coordinating parallel test components in distributed tests,

[16] A. Muscholl, D. Peled, Z. Su, Deciding Properties for Message Sequence
Charts, FoSSaCS, Foundations of Software Science and Computation

Structures, Lisbon, Portugal, 1978, LNCS 1378, 226-242.

[17] M. Nielsen, G. Plotkin, G. Winskel, Petri Nets, Event Structures and Domains,
Part I, Theoretical Computer Science 13(1981), 85–108.

[18] S. Owicki, D. Gries, Verifying properties of parallel programs: an axiomatic
approach, CACM 19(1976), 279–285.

[19] D. Peled, Th. Wilke, P. Wolper, An algorithm approach for checking closure
properties of temporal logic specifications and omega-regular languages, TCS
195(1998), 183–203.

[20] A. Pnueli, The temporal logic of programs, 18th IEEE symposium on
Foundation of Computer Science, 1977, 46–57.

[21] V. Pratt, Modeling concurrency with partial orders, International Journal of
Parallel Programming, 15 (1986), 33–71.

[22] P.S. Thiagarajan, I. Walukiewicz, An expressively complete linear time
temporal logic for Mazurkiewicz traces, LICS’97, IEEE, 1997, 183–194.

[23] W. Thomas, Automata on infinite objects, In Handbook of Theoretical
Computer Science, vol. B, J. van Leeuwen, ed., Elsevier, Amsterdam (1990)
133–191.

[24] W. Vogler, Bisimulation and action refinement, Theoretical Computer Science
114(1993), 173–200.

[25] S. Warshall. A theorem on boolean matrices. Journal of the ACM , 9 (1962),
pp. 11-12.

75

	Introduction
	Preliminaries
	Transforming Shared Variables Programs
	Preserving the Checked Property
	The Distributed Programs Model
	Extending the Framework to Infinite Traces
	Implementation and Discussion
	References

